

OPEn HPC theRmomechanical tools

for the development of eAtf fuels

Funded by the European Union

Deliverable D4.1 – Best practices and

QA protocols for code development

Version 1 – 02/08/2023

Version 1 – 02/08/2023

D4.1 version 1 [Best practices and QA protocols] - Grant Agreement nr 101061453

https://www.operahpc.eu/ 2

Disclaimer

Views and opinions expressed are those of the author(s) only and do not necessarily reflect those of the

European Union or of the European Commission. Neither the European Union nor the granting authority can

be held responsible for them.

While this document has been prepared with care, the authors and their employers provide no warranty

concerning the content and shall not be liable for any direct, incidental or consequential damages that may

result from the use of the information, or the data contained in it. Reproduction is authorised provided the

material is unabridged and the source is acknowledged.

https://www.operahpc.eu/

D4.1 version 1 [Best practices and QA protocols] - Grant Agreement nr 101061453

https://www.operahpc.eu/ 3

Document type Deliverable

Document number D4.1 version 1

Document title Best practices and QA protocols for code development

Authors A. Scolaro (EPFL)

B. Michel (CEA)

G. Latu (CEA)

D. Pizzocri (POLIMI)

L. Luzzi (POLIMI)

I. Clifford (PSI)

Release date 02/08/2023

Contributing partners EPFL, CEA, POLIMI, PSI

Dissemination level Public

Version Short description Main author WP leader Coordinator

1
First submission by

authors

A. Scolaro (EPFL)

04/05/2023

A. Scolaro (EPFL)

04/05/2023

B. Michel (CEA)

Abstract

The OperaHPC project aims to improve the numerical capabilities of 3D fuel performance modelling as part

of its strategic objectives. To achieve this goal, an open-source approach has been chosen for the tools

developed in the framework of the project, namely MMM and OFFBEAT, the latter coupled to the SCIANTIX

code. As the open-source approach is relatively new in the domain of nuclear safety studies, this document

presents a framework for achieving quality assurance targets for the open-source scientific computing tools

within the OperaHPC project. First, the document provides a brief review of the most common QA programs

and standards employed in the field, with a particular focus to the aspects that are more relevant to

OperaHPC. Then, it discusses modern software development practices to improve code quality, highlighting

the importance of revision control systems, testing methodologies, and documentation. Finally, it describes

the concept of governance model for regulating interactions between contributors, users, and decision-

makers. The framework presented in this document provides a backbone for the verification and validation

actions that will be carried out within the project and contributes to the qualification of the MMM, OFFBEAT

and SCIANTIX tools for nuclear safety studies.

https://www.operahpc.eu/

D4.1 version 1 [Best practices and QA protocols] - Grant Agreement nr 101061453

https://www.operahpc.eu/ 4

Table of contents

Disclaimer ... 2

Abstract .. 3

Table of contents .. 4

1 Introduction .. 5

1.1 Context ... 5

1.2 Objectives ... 5

1.3 Structure of the document ... 6

2 Quality Assurance in the scope of nuclear modelling .. 6

2.1 List of QA standards ... 6

2.2 Actions towards QA in OperaHPC .. 7

3 Software engineering rules to improve code quality ... 9

3.1 International Software Engineering Standards .. 9

3.2 Practical rules for open-source development .. 10

3.3 Management of an open-source project ... 11

4 Conclusions ... 12

References .. 12

https://www.operahpc.eu/

D4.1 version 1 [Best practices and QA protocols] - Grant Agreement nr 101061453

https://www.operahpc.eu/ 5

1 Introduction

One of the strategic objectives of the OperaHPC project is to improve the numerical capabilities of 3D state-

of-the-art fuel performance codes by bringing the simulation of the thermomechanical behaviour of fuel rods

several steps forward in terms of microstructure description, high performance computing (HPC) capabilities

and quantification of uncertainties. In agreement with this objective, an open-source development approach

has been selected for the three simulation tools proposed in this project: OFFBEAT for the engineering fuel

rod scale, MMM for describing mechanics at the microstructure scale, SCIANTIX for modelling fission gas

behaviour. The open-source approach has the potential to improve the quality, accessibility, and

sustainability of fuel performance codes, but it is relatively recent compared to the standard development

methodologies employed for the codes traditionally used in fuel safety studies (with or without an official

licensing from regulatory authorities). For this reason, this document proposes an overview of the

requirements and best-practices expected for developing open-source codes in this field. This will facilitate

the efforts in Tasks 4.3 and 4.4 to develop the MMM, OFFBEAT and SCIANTIX open-source codes for fuel

safety studies.

1.1 Context

Many guidance documents and industry standards offer recommendations, or even requirements to qualify

scientific computing tool (SCT). In the field of nuclear reactor analysis, qualification of a SCT corresponds to

recognition by the operator or designer of a nuclear software tool that this product can provide results

consistent with the requirements in the context of the Nuclear Safety Studies. This report describes a set of

well-established software engineering best practices and quality assurance (QA) protocols that can be put in

place in the context of open-source code development. The latter is expected to follow the technical

acceptance criteria associated with the modelling of fuel behaviour in normal operation or in the event of

incidents or accidents affecting commercial water-cooled reactors, research reactors, spent fuel or fuel

storage pools.

The qualification process typically associated with the licensing of fuel performance codes includes a key

phase dedicated to verification, validation, and uncertainties quantification (VVUQ). In line with this

industrial methodology, the OperaHPC project is targeting the implementation of this VVUQ phase for the

two SCTs developed for the analysis of generation 2 and 3 nuclear reactors, i.e., MMM and OFFBEAT (coupled

with SCIANTIX).

1.2 Objectives

Although the code development within the framework of OperaHPC will follow an open-source approach, it

will still consider the well-established practices and QA protocols used worldwide for SCTs employed in

nuclear safety studies. This document provides an overview of such standards and practices with the main

objectives being to:

1) Ensure the traceability, quality, and reliability of the developed tools,

2) Facilitate their future maintenance,

3) Fulfil quality assurance requirements of nuclear safety authorities.

For example, these best practices and QA protocols may include, as we shall see:

• the use of a code versioning system,

• the use of continuous integration in combination with automated unit tests or regression test,

• a validation database and associated code inputs with automated launch script,

https://www.operahpc.eu/

D4.1 version 1 [Best practices and QA protocols] - Grant Agreement nr 101061453

https://www.operahpc.eu/ 6

• well documented tools and models,

• the adoption of a programming paradigm to facilitate understanding and code maintenance,

• and the timely definition of coding standards.

Different practices are expected for each of the open-source tools and software developed in Work Package

4, as these will be based on their specificities and maturity. Therefore, this report will not provide specific

details on each code (for which we will refer to the dedicated web pages), but will offer general and

consistent guidelines and methodologies that should ensure that the provided simulation tools are

developed in agreement with nuclear safety authority’s requirements. As open-source development raises

specific questions related to quality assurance and qualification, we will also propose rules and tailoring

strategies capable to handle these questions.

The multiple processes in open-source development can be broken down into numerous tasks, requiring

different skills and degrees of technical expertise. To reach the expected level of quality assurance, it is

essential to define a variety of roles that allow different types of contributions to strengthen the software

and prevent introducing errors. For this reason, we will also highlight the importance of selecting a

governance model that dictates the exact roles and mechanisms for contributing to the open-source project.

1.3 Structure of the document

The following sections will summarize the QA standards and the software engineering practices that are

traditionally used for developing codes in the scope of nuclear safety analyses. Specifically, in Section 2 the

reader will have a synthetic overview of the different QA programs and standards commonly employed in

the nuclear safety domain, with a particular focus to those aspects that are more relevant for the tools

developed in the framework of the OperaHPC project. Then, Section 3 will outline modern software

development rules to improve code quality, to ensure robustness and to ease the maintenance of the

software in a sustainable manner. We will focus on those rules that are expected to be most beneficial to the

open-source development planned in the project for OFFBEAT, SCIANTIX and MMM. In Section 3 we will also

comment on some well-adapted governance models for open-source projects. Section 4 will conclude the

report by highlighting how the development methodology proposed in the project is fully consistent with

high-quality requirements for nuclear safety studies.

2 Quality Assurance in the scope of nuclear modelling

2.1 List of QA standards

The following methodologies represent a non-comprehensive summary of the QA approaches used by

different organizations that supply items or services that provide a safety function for nuclear facilities.

• The International Atomic Energy Agency (IAEA) produced general guidelines [1] for the use of

computer codes for deterministic safety analyses. Such guidelines clearly state the fundamental role

of verification and validation while stressing the importance of model assessment and

uncertainty/sensitivity analyses. The definitions and recommendations provided by IAEA represent

a common ground for further indications provided by national agencies.

• The “Autorité de Sûreté Nucleaire“ (ASN) produced guidelines for the qualification of software for

nuclear applications [2]. Such guidelines include definition and description of the verification and

validation processes (both in terms of separate effects and integral simulations) and provide

recommendations for the construction of relevant safety case studies. Practical information for the

application of the ASN guidelines are available by AFCEN [3].

https://www.operahpc.eu/

D4.1 version 1 [Best practices and QA protocols] - Grant Agreement nr 101061453

https://www.operahpc.eu/ 7

• The American Society of Mechanical Engineers (ASME) provides guidelines and specific support for

the establishment of QA for nuclear codes (the NQA-1 Certification Program [4]). The stress is on the

identification and description of the technical requirements of the code to be qualified in relation to

the different actors using it within the nuclear facility (design, licensing, operation and so on), as

usual paired with verification and validation strategies.

These general recommendations overall highlight the importance of proper code documentation and

description, with differential deep downs based on the targeted user/application, the critical role played by

the verification and validation processes, paired with uncertainty and sensitivity analyses.

2.2 Actions towards QA in OperaHPC

One of the objectives of this deliverable is to identify the intersection between available QA standards and

the specific goals of the open-source codes being developed in OperaHPC. It is worth clarifying from the get-

go that the objective is not to qualify the codes involved in OperaHPC, but to implement development

strategies in line with the qualification standards, hence facilitating further adoption of such codes in the

industrial sector.

Several common features among available QA standards are in line with the current capabilities of the codes

under development. In particular:

1. Definition of the scope of the utilisation of the code, achieved through the following formal steps

a. Identification of variables of interest. This involves selecting a subset of output variables

from the code that adequately represents each physical model relevant to the code's

intended scope of utilization. Ranking these variables in order of importance might be

beneficial for understanding their significance, but it is important to acknowledge that the

determination of importance may differ based on the specific safety criteria under

consideration. Expert judgment often plays a vital role in this ranking process, although it

could be subjective and influenced by case-specific factors. To enhance the robustness of the

assessment, numerical evaluation based on sensitivity studies can be employed to gain

greater confidence in the ranking of these variables.

b. Identification of the principal physical phenomena. Again, the list of phenomena is based

on experiment judgement (grounded for example in available experimental evidence) and

must meet the intended scope of utilisation. The code is required to include models for each

physical phenomena identified. The level of description of each phenomenon may vary (e.g.,

some models can be based on experimental data whereas others can be physics-based) but

all the important physical phenomena must be described. For example, the Phenomena

Identification and Ranking Table (PIRT) process is a systematic way of gathering information

from experts on a specific concept, and ranking the importance of the information, to meet

some decision-making objective. It has been applied to many nuclear technology issues.

c. Identification of the influential parameters. These can be either input variables, empirical

parameters, or physical parameters governing the predictions of the models implemented in

the codes. Their identification and ranking are to be based on expert judgement and/or

sensitivity analyses.

d. Determination of the utilisation range. The previous steps allow the definition of the

utilisation range, obtained by the relation of the variation ranges of the influential

parameters and of the variables of interest.

2. Definition of the validation range, which is to be intended as a subset of the utilisation range, for

which it must be performed

https://www.operahpc.eu/

D4.1 version 1 [Best practices and QA protocols] - Grant Agreement nr 101061453

https://www.operahpc.eu/ 8

a. Verification. For verification it is intended a process aimed at determining if the model

equations are solved, in a broad sense, correctly. This includes the numerical methods and

algorithms, and the data processing steps as well. Verification can be performed with

different methods depending on the specific equation being approached and the standards

of the specific application (e.g., method of exact solutions, method of manufactured

solutions, comparison with reference algorithms on random datasets).

b. Validation. The validation activity targets the comparison of the variables of interest with

available experimental data (if possible, including the associated experimental

uncertainties). To minimise the occurrence of error cancellation and guarantee a satisfactory

coverage of the utilisation range, ideally each model describing the identified physical

phenomena must be validated as stand-alone. After this step, an integral validation is to be

pursued, in which the interaction among the physical phenomena is considered.

As mentioned, these two steps are (with slightly different naming) common to several QA standards and

represent the common ground on which further actions can be pursued (e.g., definition of safety cases, and

so on). Recalling that in OperaHPC, given the research-oriented scope of the overall project, the objective is

to perform preliminary actions towards the QA standards for the involved codes, these steps are considered

sufficient within the scope of the project.

Summarizing, in the context of the OperaHPC project, the developers of the open-source codes involved will

complement their model developments with

• Ranked list of variables of interest, models, and model parameters.

• Demonstration of verification for the models.

• Demonstration of stand-alone validation for each model (whenever possible).

• Demonstration of integral validation.

The details concerning how these actions are to be performed by each code developer are not outlined in

this document but will be summarized in a future milestone of the project. The production of this additional

material to be paired with the source code developed (in Task 4.3 and Task 6.3, mainly) is intended to be

shared at least within the project, and preferably to be open source. Potential restrictions may exist for the

shareability of certain material models and of many validation cases. Therefore, considerable efforts will be

made to identify and utilize models available in the open literature to the fullest extend possible, while in

coordination with WP5 a selection of open validation datasets is planned. As for the verification cases to be

included, particular attention is connected to the HPC application of the codes involved in the project, and

thus to be performed in synergy with Task 4.5.

In addition to these actions which are formally required in the qualification process, additional effort is going

to be reserved for

• Documenting the developed models, with details connected to the variables of interest and the

inputs/parameters. Ideally, the synchronization of the documentation material with the source code

is to be pursued, but each code can set out its own specific ways and indicate it on the online

repository.

• Implementing automatic processes to guarantee the quality standards of the codes. This includes

the systematic use of regression test, peer review of models/code source, check of exhaustiveness

of documentation, traceability of each tagged version of the code base, set of tools to automatically

show the quality of the code, tools for version control, and so on.

• Performing uncertainty and sensitivity analyses (Task 5.3). These actions are not connected to the

qualification process and are code dependent. Nevertheless, we mention them here since some of

https://www.operahpc.eu/

D4.1 version 1 [Best practices and QA protocols] - Grant Agreement nr 101061453

https://www.operahpc.eu/ 9

the activities to be performed for the qualification process are common with the actions targeted in

Task 5.3 (e.g., the sensitivity analyses that can be used to rank influential model parameters).

3 Software engineering rules to improve code quality

This section focuses on software engineering rules that can improve the quality of the fuel performance codes

developed within the OperaHPC project. To this end, we will first outline some of the most renowned

international software development and quality standards. Then, we will present practical rules and best

practices for open-source code development, highlighting tools such as version control or regression testing

that can aid in quality assurance. Finally, we will describe the concept of governance model, that clarifies the

exact roles and mechanisms for contributing to the open-source project. Adhering to the rules and best

practices described in this Section will guarantee that the simulations tools developed within OperaHPC in

Tasks 4.3 and 4.4 meet the highest quality standards and can be used with confidence by nuclear safety

authorities.

3.1 International Software Engineering Standards

The IEEE, ISO, and other standards organizations have produced a broad array of software engineering

standards and related documents [5]. Comparatively few software products are forced by law to comply with

specific standards, however. This is particularly true in the area of open-source software. Standards are

generally adopted voluntarily by a software engineering organization or imposed by the customer or other

stakeholders. For safety critical systems, however, software needs to comply with the regulations of the

country. As an example, software written for aviation control systems in the US are legally required to comply

with the US Federal Aviation Administration guidelines RTCA/DO-178B [6].

Several general software development and quality standards are internationally available:

• The software engineering standard (PSS-05-0) of the European Space Agency (ESA) [7]. These

standard mandates that all software shall have a lifecycle approach consisting of the following basic

phases:

o User requirements definition – The software scope and operational environment are

documented in a User Requirements Document.

o Software requirements specification – The requirements of the software are defined and

documented in a Software Requirements Document.

o Architectural design specification – The architecture and structure of the software are

defined. The components, modules as well as the control and data flow between them are

documented in an Architectural Design Document.

o Detailed design and code production – In this phase the software itself is coded according to

the specifications. Unit, integration, and system testing is performed according to

verification plans defined in the Software Requirements and Architectural Design

Documents. Once completed, a formal design review is carried out.

o Transfer of software to operation and maintenance – This includes the activities performed

for the installation, acceptance testing, transfer of the software to the operational team and

monitoring.

• The MIL-STD-498 standard for software development of the US Department of Defense [8]. Similar

to the ESA standard, this standard stipulates that the software engineering process shall include a

https://www.operahpc.eu/

D4.1 version 1 [Best practices and QA protocols] - Grant Agreement nr 101061453

https://www.operahpc.eu/ 10

software requirements analysis, software design, software implementation, unit testing and

integration and qualification testing.

• IEEE/ISO/IEC 12207 Standard for Information Technology-software life cycle processes [9][10]. The

intended purpose of this international standard is to establish a common framework for software life

cycle processes, with well-defined terminology, that can be referenced by the software industry. It

provides a process framework upon which an organization can build its enterprise-level life cycle

processes. It addresses the complete software engineering life cycle, from acquisition and supply,

through development, to operations and maintenance. A graphical illustration of the life cycle is

shown in Figure 1. One can see that this is an extensive standard that covers a broad range of topics

and is actually intended for large companies. An organization, depending on its purpose, can select

and apply an appropriate subset to fulfil their requirements. The scope of the developments within

OperaHPC lie largely within the development, verification, and validation, along with quality

assurance and training. Some relevant IEEE standards are therefore:

o 830, Recommended Practice for Software Requirements Specifications

o 1016, Recommended Practice for Software Design Descriptions

o 1008, Standard for Software Unit Testing

o 1012, Standard for Software Verification and Validation

Figure 1. Overview of IEEE/EIA 12207 standard for information

technology-software life cycle processes

3.2 Practical rules for open-source development

Given the nature of open-source software and developments, many informal guides are available online

which relate to open-source software development best practices [11][12][13][14][15]. These guides will

often touch on tools and approaches to facilitate aspects of the more comprehensive processes that are

defined in the international standards. They are generally not, however, very detailed in their descriptions,

and will generally highlight specific tools and approaches that are preferred by the authors but are not

necessarily appropriate for all software products. Fogel [16] has attempted to provide a more comprehensive

guide, which expands considerably on other informal guides and covers topics such as setting up your own

https://www.operahpc.eu/

D4.1 version 1 [Best practices and QA protocols] - Grant Agreement nr 101061453

https://www.operahpc.eu/ 11

open-source community, technical infrastructure, financial aspects of open-source projects, management

and communication, packaging and releasing software and legals aspects. Many of the guides mentioned

above stress the following common points:

• The open-source project should be hosted online. Various public repositories are available for source

code revision control (e.g., GitLab, GitHub, Sourceforge, Google Code Hosting, Gitorious).

• Code documentation should be kept up to date.

• Source code should be cleanly written, follow pre-defined guidelines and provide ample comments

to understand.

• Clear rules should be provided for code contributions and best practices should be followed to

manage the project, e.g., delegating work, code reviews, communication.

• Explicit or implicit hierarchy should be put in place for decision-making.

• Given that open-source users and contributors will likely be spread around the globe, tools for user

and developer collaboration should be made available. This includes bug tracking systems, wiki

pages, chatrooms, mailing lists, revision control systems and social networking services.

• The pros/cons of different licencing options should be considered.

From the perspective of quality assurance, several open-source tools are available to assist in building the

processes for ensuring quality:

• Revision control systems (Git, Mercurial, SVN, CVS, etc.) are essential for traceability of the code. A

revision control system is a software tool that helps to manage changes to source code files over

time. It allows multiple developers to collaborate on a project by tracking changes to the code,

providing version history, and enabling code branching and merging.

• Automated software documentation systems, which will scan the source code and produce up-to-

date documentation on the structure of the software, may to some extent replace software design

descriptions, providing references for software developers. Examples include Doxygen, DocUtils and

Sphinx.

• Bug tracking systems will record bug reports and are therefore valuable in tracing the code issues

and their resolution. Typically, they allow developers to create, track, and prioritize bugs, and

provides information about their status and resolution. Many of the online revision control systems

provide bug tracking tools.

• Non-regression testing tools (CTest, PyUnit, JUnit, ReFrame, etc.) as well as so-called continuous

integration services (Jenkins, GitLab, etc.) are valuable for automating the process of testing new

code versions. They provide relatively quick feedback on whether recent changes to the code do not

break existing functionality. Continuous integration services can automate the process of building

and testing the code, typically running tests automatically whenever changes are made to the

codebase. Some of the more advanced tools will provide information on how comprehensive the

unit tests are, i.e. how much of the software remains untested (so-called code coverage).

3.3 Management of an open-source project

Effective management is crucial for the success of an open-source project. A governance model is a set of

rules and customs that define who gets to do what and how they are supposed to do it in an open-source

project. It regulates and clarifies:

• The decision-making processes, including how contributors can propose changes to the code, how

these are reviewed and accepted (e.g., merging of different branches).

• The open-source code license (to be chosen among GPL, MIT, BSD or others) which defines how the

software can be used, modified, and distributed by others..

https://www.operahpc.eu/

D4.1 version 1 [Best practices and QA protocols] - Grant Agreement nr 101061453

https://www.operahpc.eu/ 12

• The organizational structure of the project, including roles and responsibilities of contributors, users,

and decision-makers.

• Guidelines for contributors, such as coding standards, documentation requirements, and testing

procedures.

• Supervision of internal processes, such as code reviews, software life cycle stages (beta version

delivery, release stage, tagging used to capture a point in code history).

There are several governance models that open-source projects can adopt. A few examples are the

meritocracy model, where decision-making power is based on a contributor's track record of contributions,

and the consensus model, where decisions are made through discussion and agreement among all

contributors. The appropriate governance model for an open-source project depends on its size, complexity,

and goals.

Each code developed in the framework of OPERA-HPC has the goal to indicate on its own website the chosen

governance model, providing a concise but clear description of the guidelines for the contributors, of the

rules that specify the way members interact within the project, of the decision-making process and of the

license type chosen for the given code. If this information is not provided, each code will follow a default

founder-leader governance model which is quite common for new projects. In this case, the individual or

group who started the project also administers the project, establishes its vision, controls all permissions.

This group has the final say for all the important decisions concerning the code.

4 Conclusions

In this document, we have listed a series of QA targets for the development of fuel performance codes in

respect to several safety authorities’ expectations. We have also outlined a set of important rules and

guidelines for achieving these QA targets in the context of open-source software development, specifically

for the OPERA-HPC project. Each major scientific computing tool in the project will have its own website

providing tools, organization rules and reference documents to ensure that the QA targets are gradually

achieved. While this document only provides the framework and organizational backbone for the open-

source development of the SCT in the Opera-HPC project, specific VVQI actions, including verification and

validation, are planned in the WP5 and they will be able to rely on the methodology proposed in this

document. Moreover, these actions in WP5 will bring an important contribution to the qualification of the

MMM, OFFBEAT and SCIANTIX tools and will provide a fundamental step towards the licensing related to

Nuclear Safety Studies. As listed in [17], several initiatives are on their way to provide open-source codes for

the nuclear community. In this framework, OPERA-HPC is also committed to contribute and share insights on

the way to achieve open-source software that meets expected levels of quality assurance.

References

[1] INTERNATIONAL ATOMIC ENERGY AGENCY, Deterministic Safety Analysis for Nuclear Power Plants,

IAEA Safety Standards Series No. SSG-2 (Rev.1), IAEA, Vienna (2019) https://www-

pub.iaea.org/MTCD/Publications/PDF/PUB1851_web.pdf

[2] Autorité de Sureté Nucléaire, Qualification of scientific computing tools used in the nuclear safety

case – 1st barrier, GUIDE N. 28 https://www.french-nuclear-safety.fr/asn-regulates/asn-guides/asn-

guide-no.-28

https://www.operahpc.eu/
https://www-pub.iaea.org/MTCD/Publications/PDF/PUB1851_web.pdf
https://www-pub.iaea.org/MTCD/Publications/PDF/PUB1851_web.pdf
https://www.french-nuclear-safety.fr/asn-regulates/asn-guides/asn-guide-no.-28
https://www.french-nuclear-safety.fr/asn-regulates/asn-guides/asn-guide-no.-28

D4.1 version 1 [Best practices and QA protocols] - Grant Agreement nr 101061453

https://www.operahpc.eu/ 13

[3] AFCEN, PTAN RCC-C Qualification OCS rev A - PTAN Qualification of scientific computing tools used in

the nuclear safety case - 1st barrier - PTAN RC 20 001 Ind A, 2019 https://www.afcen.com/en/rcc-

c/140-ptan-rcc-c-qualification-ocs-rev-a.html

[4] Nuclear Quality Assurance (NQA-1) Certification Program available at

https://www.asme.org/certification-accreditation/nuclear-quality-assurance-nqa1-certification

[5] R.S. Pressman, Software Engineering; A Practitioner’s Approach, Seventh Edition, Mc Graw Hill, 2010

[6] H. H. Ammar, The Software Development Standards, Presentation available online at

https://community.wvu.edu/~hhammar/rts, accessed 24 March 2023

[7] ESA Software Engineering Standards, European Space Agency, ESA PSS-05-0 Issue 2, February 1991

[8] P.R. DeWeese, MIL-STD-498 Software Development and Documentation, SPC-94032-CMC, Version

01.00.00, July 1994

[9] IEEE Standards Collection: Software Engineering, IEEE Standard 610.12-1990, IEEE, 1993

[10] Systems and software engineering - Software life cycle processes, ISO/IEEE/IEC 12207:2017

[11] Open Source Development Guidelines, available at

https://wiki.civiccommons.org/Open_Source_Development_Guidelines, accessed 24 March 2023

[12] Best Practices | politique-de-contribution-open-source, available at https://disic.github.io/politique-

de-contribution-open-source/pratique.en.html, accessed 24 March 2023.

[13] T. Adhikary, Open Source for Developers – A Beginner's Handbook to Help You Start Contributing,

available at https://www.freecodecamp.org/news/a-practical-guide-to-start-opensource-

contribution, accessed 23 March 2023

[14] P. Kulkarni, How to Maintain an Open Source Project – Best Practices and Tips, available at

https://www.freecodecamp.org/news/how-to-maintain-an-open-source-project, accessed 24 March

2023

[15] B. Hill, Free Software Project Management HOWTO, available at

https://mako.cc/projects/howto/FreeSoftwareProjectManagement-HOWTO.html, accessed 24

march 2023.

[16] K. Fogel, Producing Open Source Software; How to Run a Successful Free Software Project, available

online at https://producingoss.com, accessed 24 March 2023

[17] IAEA Open-source Nuclear Codes for Reactor Analysis, available at

https://nucleus.iaea.org/sites/oncore/SitePages/List%20of%20Codes.aspx, accessed 30 March 2023

https://www.operahpc.eu/
https://www.afcen.com/en/rcc-c/140-ptan-rcc-c-qualification-ocs-rev-a.html
https://www.afcen.com/en/rcc-c/140-ptan-rcc-c-qualification-ocs-rev-a.html
https://www.asme.org/certification-accreditation/nuclear-quality-assurance-nqa1-certification
https://community.wvu.edu/~hhammar/rts
https://wiki.civiccommons.org/Open_Source_Development_Guidelines
https://disic.github.io/politique-de-contribution-open-source/pratique.en.html
https://disic.github.io/politique-de-contribution-open-source/pratique.en.html
https://www.freecodecamp.org/news/a-practical-guide-to-start-opensource-contribution
https://www.freecodecamp.org/news/a-practical-guide-to-start-opensource-contribution
https://www.freecodecamp.org/news/how-to-maintain-an-open-source-project
https://mako.cc/projects/howto/FreeSoftwareProjectManagement-HOWTO.html
https://producingoss.com/
https://nucleus.iaea.org/sites/oncore/SitePages/List%20of%20Codes.aspx

	Disclaimer
	Abstract
	Table of contents
	1 Introduction
	1.1 Context
	1.2 Objectives
	1.3 Structure of the document

	2 Quality Assurance in the scope of nuclear modelling
	2.1 List of QA standards
	2.2 Actions towards QA in OperaHPC

	3 Software engineering rules to improve code quality
	3.1 International Software Engineering Standards
	3.2 Practical rules for open-source development
	3.3 Management of an open-source project

	4 Conclusions
	References

